Spreading of wave packets in one
dimensional disordered chains.
1. Different dynamical regimes

Charalampos (Haris) Skokos

Max Planck Institute for the Physics of Complex Systems
Dresden, Germany

E-mail: hskokos@pks.mpg.de
URL: http://www.pks.mpg.de/~hskokos/

WorKk in collaboration with

Sergej Flach, Dima Krimer and Stavros Komineas



Outline

 The quartic Klein-Gordon (KG) disordered lattice

Three different dynamical behaviors
 Numerical results

e Similarities with the disordered nonlinear

Schrodinger equation (DNLS)

e Conclusions
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Interplay of disorder and nonlinearity

Waves in disordered media — Anderson localization
(Anderson Phys. Rev. 1958). Experiments on BEC (Billy
et al. Nature 2008)

Waves in nonlinear disordered media — localization or
delocalization? 20—

Theoretical and/or numerical studies (Shepelyansky
PRL 1993, Molina Phys. Rev. B 1998, Pikovsky &
Shepelyansky PRL 2008, Kopidakis et al. PRL 2008)

Experiments: propagation of light in disordered 1d
waveguide lattices (Lahini et al. PRL 2008)

Atomic density (atoms pm-)

E’ 2D core
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The Klein — Gordon (KG) model

N .2 =
& 2 1 4 1 2
HK=ZPI +—u, +—u + (”1+1'”1)
~ 2 2 4" 2w
with fixed boundary conditions u,=p,=u,,,=py.;=0. Usually N=1000.
- . 1 3
Parameters: W and the total energy E. & chosen uniformly from {E,E}

Linear case (neglecting the term u*/4)
Ansatz: u=A,exp(iwt)
Eigenvalue problem: A4,= gA;- (A,,; + A,_;) with

A=W’ -W -2, g=WE-1)

Unitary eigenvectors (normal modes - NMs) Av, ; are ordered according

N
to their center-of-norm coordinate: X , = Z 1 IAZ,,

All eigenstates are localized (Anderson localization) having a localization
length which is bounded from above.
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Scales

o’ € 1 i+ 4 , width of the squared frequency spectrum: A =]+ i
2°2 W W

Localization volume of eigenstate: _ 1
pv N
4
Z Av,l

Average spacing of squared eigenfrequencizes of NMs within the range of a

localization volume: A’ = =X
P,

For small values of W we have Af¢)° ~ /2

Nonlinearity induced squared frequency shift of a single site oscillator

— 3El

[ ~
2¢,

The relation of the two scales 4w’ < A, with the nonlinear
frequency shift 6, determines the packet evolution.
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Distribution characterization

We consider normalized energy distributions in normal mode (NM) space

*— with E = 1( sz +w’ A’ ) , where A is the amplitude

E
3, =
ZmEm 2
of the vth NM.

— N - 2 . - N
Second moment: m, —Z(V-V) Z, with v = Z V3
v=1 v=1

1

PIWES

measures the number of stronger excited modes in z,. Single mode P=1,
Equipartition of energy P=N.

Participation number: P =
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E =0.05, 0.4, 1.5 - W =4, Single site excitations

Regime I: Small values of nonlinearity. 9, < Ao’
frequency shift is less than the average spacing of
interacting modes. Localization as a transient (like
in the linear case), with subsequent subdiffusion.

Regime II: Intermediate values of nonlinearity.
Aw’ < 0, < 4, resonance overlap may happen
immediately. Immediate subdiffusion (Molina
Phys. Rev. B 1998, Pikovsky & Shepelyansky PRL
2008).

Regime I1I: Big nonlinearities. o, > 4, frequency
shift exceeds the spectrum width. Some
frequencies of NMs are tuned out of resonances
with the NM spectrum, leading to selftrapping,
while a small part of the wavepacket subdiffuses
(Kopidakis et al. PRL 2008).

a a2
Subdiffusion: M, ~ 1", P ~1

: Assuming that the spreading is due to heating of
10° 11[}'I 1(}6 1(}3 1(}“:' the cold exterior, induced by the chaoticity of the
t wave packet, we theoretically predict o=1/3.
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Different spreading regimes

A Second moment m,

E|l_~ — Participation number P

Pl

The fraction of the
wave packet that
spreads decreases
with increasing
nonlinearity.

The detrapping
time increases with
increasing W.

—
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Similar behavior of DNLS
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Single site excitations
Regimes I, I1, 111

In regime II we
averaged the
measured exponent «
over 20 realizations:

0=0.33+0.05 (KG)
0=0.330.02 (DLNS)



Conclusions

e Chart of different dynamical behaviors:

v" Weak nonlinearity: Anderson localization on finite times. After some
detrapping time the wave packet delocalizes (Regime I)

v" Intermediate nonlinearity: wave packet delocalizes without transients
(Regime II)

v" Strong nonlinearity: partial localization due to selftrapping, but a
(small) part of the wave packet delocalizes (Regime III)

e Subdiffusive spreading induced by the chaoticity of the wavepacket

 Second moment of wavepacket ~ t* with a=1/3

* Spreading is universal due to nonintegrability and the exponent a does not
depend on strength of nonlinearity and disorder
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