
Spreading of wave packets in one Spreading of wave packets in one 
dimensional disordered chains.dimensional disordered chains.
I. Different dynamical regimesI. Different dynamical regimes

Charalampos (Haris) Skokos
Max Planck Institute for the Physics of Complex Systems

Dresden, Germany

E-mail: hskokos@pks.mpg.de

URL: http://www.pks.mpg.de/~hskokos/

Work in collaboration with 
Sergej Flach, Dima Krimer and Stavros Komineas



H. Skokos DPG, Dresden, 23 March 2009 2

OutlineOutline

• The quartic Klein-Gordon (KG) disordered lattice

• Three different dynamical behaviors

• Numerical results

• Similarities with the disordered nonlinear 

Schrödinger equation (DNLS)

• Conclusions
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Interplay of disorder and nonlinearityInterplay of disorder and nonlinearity
Waves in disordered media – Anderson localization
(Anderson Phys. Rev. 1958). Experiments on BEC (Billy 
et al. Nature 2008) 

Waves in nonlinear disordered media – localization or 
delocalization?
Theoretical and/or numerical studies (Shepelyansky
PRL 1993, Molina Phys. Rev. B 1998, Pikovsky & 
Shepelyansky PRL 2008, Kopidakis et al. PRL 2008)
Experiments: propagation of light in disordered 1d 
waveguide lattices (Lahini et al. PRL 2008)
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The Klein The Klein –– Gordon (KG) modelGordon (KG) model
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Usually N=1000.

Parameters: W and the total energy E.

Linear case (neglecting the term ul
4/4)

Ansatz: ul=Al exp(iωt)
Eigenvalue problem: λAl = εlAl - (Al+1 + Al-1) with

�2
l lλ = Wω -W - 2,    ε = W(ε - 1)

Unitary eigenvectors (normal modes - NMs) Aν,l are ordered according 

to their center-of-norm coordinate: ν ν∑N 2
,ll=1

X = lA

All eigenstates are localized (Anderson localization) having a localization 
length which is bounded from above.
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ScalesScales
, width of the squared frequency spectrum:

Localization volume of eigenstate:

Average spacing of squared eigenfrequencies of NMs within the range of a 

localization volume: 

For small values of W we have
Nonlinearity induced squared frequency shift of a single site oscillator

The relation of the two scales                     with the nonlinear 
frequency shift δl determines the packet evolution.
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Distribution characterizationDistribution characterization
We consider normalized energy distributions in normal mode (NM) space

of the νth NM.

, where Aν is the amplitude≡
∑
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Second moment: ( )∑
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Participation number: 
∑N 2

νν=1

1P =
z

measures the number of stronger excited modes in zν. Single mode P=1, 
Equipartition of energy P=N.
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slope 1/3

slope 1/6

E = 0.05, 0.4, 1.5 - W = 4. Single site excitations
Regime I: Small values of nonlinearity.                    
frequency shift is less than the average spacing of 
interacting modes. Localization as a transient (like 
in the linear case), with subsequent subdiffusion.

Regime II: Intermediate values of nonlinearity. 
resonance overlap may happen 

immediately. Immediate subdiffusion (Molina 
Phys. Rev. B 1998, Pikovsky & Shepelyansky PRL 
2008).

Regime III: Big nonlinearities. δl > ΔK frequency 
shift exceeds the spectrum width. Some 
frequencies of NMs are tuned out of resonances 
with the NM spectrum, leading to selftrapping, 
while a small part of the wavepacket subdiffuses
(Kopidakis et al. PRL 2008).

Subdiffusion:
Assuming that the spreading is due to heating of 
the cold exterior, induced by the chaoticity of the 
wave packet, we theoretically predict α=1/3.

2
lδ < Δω

2
l KΔω < δ < Δ

∼ ∼a a/2
2m t ,   P t
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Different spreading regimesDifferent spreading regimes
Second moment m2

Participation number P

The fraction of the 
wave packet that 
spreads decreases 
with increasing 
nonlinearity. 

The detrapping
time increases with 
increasing W.
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Similar behavior of DNLSSimilar behavior of DNLS

Single site excitations

Regimes I, II, III

In regime II we 
averaged the 
measured exponent α
over 20 realizations:

α=0.33±0.05 (KG)
α=0.33±0.02 (DLNS)

DNLS KG

slope 1/3 slope 1/3

slope 1/6 slope 1/6
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ConclusionsConclusions
• Chart of different dynamical behaviors:

Weak nonlinearity: Anderson localization on finite times. After some 
detrapping time the wave packet delocalizes (Regime I)

Intermediate nonlinearity: wave packet delocalizes without transients
(Regime II) 

Strong nonlinearity: partial localization due to selftrapping, but a 
(small) part of the wave packet delocalizes (Regime III)

• Subdiffusive spreading induced by the chaoticity of the wavepacket

• Second moment of wavepacket ~  tα with α=1/3

• Spreading is universal due to nonintegrability and the exponent α does not 
depend on strength of nonlinearity and disorder
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